If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17+18n+n^2=0
a = 1; b = 18; c = +17;
Δ = b2-4ac
Δ = 182-4·1·17
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-16}{2*1}=\frac{-34}{2} =-17 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+16}{2*1}=\frac{-2}{2} =-1 $
| 3c-¹=81 | | 4)3x-3=12 | | 4+2(x+6)=24 | | 6-4x=2x+30 | | 4x+3=66x-7 | | 6x–4=14 | | 2(2x+3)=34x | | |t|+2.7=4.5 | | 14+5(x+3)–=7x | | 3y+5=4-2 | | 3/5x=5/10 | | p^2-√14p=-40 | | (D^2+4D+3.36I)y=0 | | Y+6y+13y=0 | | 12000-3000y+200y=10000 | | 1200-3000y+200y=10000 | | 1200-300y+200y=10000 | | -m-(-7)=9-2m | | 1200-300y-200y=10000 | | M²-5m=-3 | | 3j-1=0 | | 2-3a-7=8a+3-a | | H(t)=5t^2+10t+20 | | .2=x/400 | | .2=x+400 | | H(t)=5t^2+5t+20 | | X^2-9x+81/4=129/4 | | -3v+12=5v-40 | | x×x+19x=42 | | Y-3y=9 | | S-6=3s+12 | | 9+2y-8=0 |